凯发

Speaker-Wenhui Duan

Wenhui Duan
Monash University, Australia
Wenhui Duan is an ARC Future Fellow in Monash University. He graduated from Tianjin University (China) in engineering mechanics with B.Eng. and M.Eng. in 1997 and 2002, respectively. He received his Ph.D. from the Department of Civil Engineering, the National University of Singapore (NUS), Singapore in April 2006. He joined Monash University as a Lecturer in November 2008 and was appointed as an ARC Future Fellow in February 2013. Among 1013 Future Fellows awarded in Australia in last 5 years, he is one out of 7 researchers working in the area of Civil Engineering.

He conducted interdisciplinary research on nanocomposites and nanomechanics. By adding advanced nanomaterials such as carbon nanotubes and graphene oxide into conventional engineering materials such as epoxy, Portland cement, and geopolymer, he has developed novel nanocomposites with high mechanical performances and reduced environmental impact. His research studies have resulted in more than 80 publications. His current h-index stands at 18 (as Aug 2014 via Google Scholar). In the last five years, he was awarded 5 ARC grants on nanocomposites and nanomechanics totalling $AUD 2.0 million.
Title:Sustainable and Resilient Infrastructure Materials – New Perspective from Graphene and Carbon Nanotubes
SymposiumBuilding Materials
Starting Time
Ending Time
Abstract

This presentation will provide an overview of the research activities within the Department of Civil Engineering at Monash University (Australia) on nano reinforced infrastructural materials. In particluar, a theoretical framework with supporting experiments is developed to address the effect of ultrasonication energy for carbon nanotube (CNT) reinforced OPC pastes.  The distribution of CNT lengths and the concentration of dispersed CNTs are characterized using scanning electron microscopy images and UV-vis spectra. After ultrasonication, the length of CNT is found to follow log-normal distributions which show a shortening effect. The concentration of dispersed CNT increases with ultrasonication energy but reaches a plateau after about 250 J/ml. The distribution of CNT lengths and the concentration of dispersed CNTs are incorporated into a micromechanics-based model to simulate the crack bridging behavior of CNTs. Results show that the distribution of CNT lengths leads to better estimation of reinforcing effect than does the average length. Furthermore, for unit volume of dispersed CNTs, the reinforcing efficiency decreases monotonically with increased ultrasonication. Based on the proposed model, the predicted optimal ultrasonication energy (89 J/ml) for reinforcing is found before the dispersion plateau is reached. In addition, the preliminary results on graphene oxide (GO) reinforced OPC pastes will be presented as well with the comments on the advantages/disadvantages of GO for reinforcing purpose.

Main Organizer

CGIA supports members to focus on application and industry chain, to keep pace with market development, to guarantee industry interests by involving in policy making and establishing standards, and to build long-term cooperation with up-down stream enterprises all over the world.

Contact
+86-18657108128
+86-10-62771936

E-mail: meeting@c-gia.org

Abstract: Minyang Lu

Sponsor: Wenyang Yang

Media: Liping Wang

Follow us on WeChat
Copyright © GRAPCHINA 京ICP备10026874号-24     京公网安备 11010802030754号
share to:

Operated by:China Innovation Alliance of the Graphene Industry