凯发

Speaker-Kjell Jeppson

Kjell Jeppson
Chalmers University of Technology, Sweden

Kjell O. Jeppson (IEEE Life Member) received the Ph.D. degree in solid-state electronics from Chalmers University of Technology, Gothenburg, Sweden, in 1977. He was appointed professor in microelectronics at the same university in 1996.  Previously, he has been vice dean at the School of Electrical Engineering and director of its international master´s program in Embedded Electronic System Design.

Presently, his main research interest is focused on the use of advanced 2D materials as integrated heat spreaders in integrated circuits and light emitting diodes, and the use of carbon nanotubes for through-silicon-vias in 3D stacking of microelectronic chips. Previously, his research interest concerned MOSFET transistor modeling and parameter extraction, CMOS gate delay, characterization of MNOS nonvolatile memories, as well as hierarchical DRC of VLSI circuits. He has authored a textbook on semiconductor devices (in Swedish). He is a member of the technical committees of the IEEE Swedish System on Chip Conference, IEEE Nordic Circuit and Systems Conference, European Workshop on Microelectronic Education, and the IEEE International Conference on Microelectronic Test Structures, a conference for which he has been both Technical Program Chairman, and General Chairman.

Title:Cooling Hot Spots by hexagonal Boron Nitride Heat Spreaders
SymposiumB15 Graphene for High Power Device Applications
Starting Time
Ending Time
Abstract

According to ITRS, the trend for microelectronics systems is towards smaller size, smaller package footprint and more functionality. As a consequence of this development, heat dissipation is becoming one of the major bottlenecks in limiting further growth and development of microelectronics systems. Therefore, there is a great demand for integrating into electronic devices highly efficient heat spreaders for reducing the temperature of local hot spots. Many different heat spreader materials have been developed for addressing the problem. Metallic materials like copper and aluminum are widely used due to their high thermal conductivity. However, the thermal performance of metal films decreases dramatically when their thicknesses are reduced into nanoscale. On the contrary, the thermal conductivity of thin hBN nano-ribbons can be as high as 2000 W/mK. Therefore, hBN films could find applications in the thermal management of high power electronics and displays, in particular in applications where carbon-based materials may not be appropriate. 

In this invited talk, the use of heat spreaders based on layered hBN films for reducing excess hot spot temperatures at the chip level in high power devices like light-emitting diodes will be reviewed. Different methods for synthesizing hBN flakes will be shown, with the main focus on liquid phase exfoliation (LPE). Examples of electron (SEM, TEM) and Raman spectroscopy characterization of the fabricated hBN films will be shown. After characterization, the hBN films were directly attached to the target power chips. The power chips were integrated with temperature sensors in order to analyze the thermal performance of the hBN heat spreader. Resistor temperature detectors and IR cameras were used to capture the hot spot temperature and the heat spreading effects of the hBN material by monitoring the temperature distribution around the hot spot. At a hot spot heat flux of 600 W/cm2 a hot spot temperature decrease of almost 20oC (from 95 to 75oC) was found compared to samples without hBN heat spreaders. In summary, our work so far shows signs of a promising future for the use of hBN heat spreaders for cooling hot spots in microelectronic systems.

This presentation is based on work performed at the BioNano Systems Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, the SMIT Center, School of Automation and Mechanical Engineering and Key State Laboratory of New Displays and System Applications, Shanghai University, and the SHT Company, Gothenburg, Sweden, by my colleagues Yifeng Fu, Lilei Ye, Johan Liu, and graduate students Shuangxi Sun, Wei Mu, Jie Bao, and Shirong Huang.

Main Organizer

CGIA supports members to focus on application and industry chain, to keep pace with market development, to guarantee industry interests by involving in policy making and establishing standards, and to build long-term cooperation with up-down stream enterprises all over the world.

Contact
+86-18657108128
+86-10-62771936

E-mail: meeting@c-gia.org

Abstract: Minyang Lu

Sponsor: Wenyang Yang

Media: Liping Wang

Follow us on WeChat
Copyright © GRAPCHINA 京ICP备10026874号-24     京公网安备 11010802030754号
share to:

Operated by:China Innovation Alliance of the Graphene Industry